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Abriraci. nire criiisai rrponrni and ihe exponeni 0; iis iogariihmic sorr~c i iu~ i s  Fur iiie 
end-to-end displacement of directed Levy Rights are calculated. The probability distribution 
with the decay x-*(ln x)." for the step-length lrl> x, which is more general than the usual 
one F", is considered. The self-avoidance and hence the dimension d have no influence 
on the exponents. This is shown rigorously for d s 2  and seems to be true also for d > 2 .  
Three different definitions for the critical behaviour are given, one of them is especially 
appropriate for computer simulations. 

1. Introduction 

A random flight is similar to a random walk, except that it has a probability distribution 
of step-length instead of a fixed step size. Mandelhrot discussed certain random flights 
with a probability distribution of the type 

Pr{ r :  r > x} K x-* 0<@'2 ( 1 )  
for large x and called them Ltvy flights [l] since this probability distribution is one 
of Ltvy type. Generally, we define a L6vy flight as a flight with the probability 
distribution that belongs to the domain of attraction of a stable (Ltvy) distribution [2]. 

The trajectories of Ltvy flights differ strikingly from that of ordinary random walks 

a fractal set with Hausdorff dimension [3] p instead of 2. Because of the divergence 
of the variance of step size, the asymptotic behaviours of various LPvy flights are all 
different from that of random walks. For instance, the critical correlation exponent Y 
of a self-avoiding L k y  flight (SALF) [4], defined via the geometric average of the 
end-to-end displacement 

.̂.A a:"L.̂ TL^ ...^^^ ^< .L" :̂1̂  ̂ ..:-:*"A I... -.. ..-A:.."-.. 1 &.........̂ ------"*,.-,%--- a,," L L L B U L J .  111s L I f i L C  U L  L l l C  J l lCJ  "lallr" "y fill "1"'L"LLJ "G'y-LypC p " " p ' p 6 L L " L  l U l l l l J  

- 2 u  in N (2) 
K(N-)'i 

for large number N of steps, is no longer that of a self-avoiding walk (SAW), i.e. 
U = 3/(2 + d)  for d < d, = 4 [SI. Following the analysis of the equivalent n-vector spin 
model presented by de Gennes [5], Halley and Nakanshi [61 obtained the €-expansion 
of the exponent U of the node-avoiding LCvy flight (NALF) as 

E + (19 -2p2)e2/(64p2)+. . . (3) 
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with E = d - Zp, which was considered to coincide with simulation results more precisely 
than the exponents determined with a Flory-type argument [4] 

for d s d c = 2 p  
for d > d , .  (4) 

Even the two types of SALFS, the NALF and the path-avoiding Ldvy flight (PALF), are 
in different universality classes [7, SI under a certain upper marginal dimension d,.  

Recently it has been realized that the introduction of a global bias in geometrical 
models like directed percolation and directed  SAW^ [9-111 leads to novel anisotropic 
critical behaviours. How about the critical behaviour of directed self-avoiding flights 
[ 12]? Does the directed self-avoiding Ldvy flight ( DSALF) belong to the same universality 
class as either the directed SAW or the ordinary SALFS? From the results in [7] one can 
get the critical exponent U of the PALF in ID. But how do this exponent and the other 
related exponents vIl and uI depend on the spatial dimension? In this paper we first 
discuss the influence of self-avoidance on the directed flights and then, with the help 
of some useful definitions of the exponents, we calculate the critical exponents of the 
DSALF with the probability for steps 111 > x with decay x-'(ln x)-", O S  p S  2. With the 
help of an example, we also show that the critical exponents can be determined even 
if the probability distribution does not lie in the domain of attraction of a Ldvy 
distribution. 

2. Self-avoidance of directed flights 

Let us consider a directed flight in the d-dimensional Euclidean space R:= 
{(x,, x2, . . . , xd) 1 xI O), where the probability distribution for the Nth step r(  N )  = 

* . I  A r j j  hoe ehl. -mhnhil;t<i Anneitcr "/-IN\\ I,rith 
.&.* p'""~"...LJ "*..oAGJ y , , , ' , , ,  " ,.,., ( r , ( X ) ,  r z ( X ) ,  . _ _ , .  d\',,, 

p ( r )  d"r = O  and [, , ,op(r)ddr=P>O if r l ( N -  l ) >  0. 1.,,, 
But if 

r , ( N - k )  = r l ( N -  k +  1) = r l ( N - l )  = 0 

there can be with respect to p ( r ( N ) )  a positive probability, denoted as 
q (  r(  N - k ) ,  . . . , r(  N - 1)) S 1 - P, with which the propagator visits a site more than 
once or the path between R ( N ) =  Z,"=, r ( n )  and R ( N - 1 )  intersects that between 
R ( N - k )  and R(N- l ) .These  steps with probability q ( r ( N - k ) ,  ..., r ( N - I ) )  have 
to be cancelled for a directed node- or path-avoiding flight. Then the probability density 
p ( r ( N ) )  must be modified with some weight Q ( r ( N ) ;  r ( N -  k),  . . . , r ( N -  l)) ,  which 
may be written for the 'true' self-avoiding flight [13-141 we will treat below, as 

and r , ( N - k -  1)ZO 

(1 - q ( r (  N - k ) ,  . . . , r ( N -  1))}-' 

if r ( N )  is allowed and 0 elsewhere. For the special case that j , , < o p ( r )  d"r is 0 for 
every i ( 1  s i s  d) ,  we get the fully directed flight [lo], which is always self-avoiding. 

In statistical physics one is mainly interested in the asymptotical behaviours of 
R ( N )  and oftwo related quantities-the two projections of R ( N ) ,  R I I ( N )  and R , ( N ) ,  
onto the directions parallel and perpendicular to the preferred direction, respectively. 
If the probability distribution satisfies 

p ( r l ,  r , ,  r 3 , .  . ., r " ) = p ( r ~ , - r * , - r ~ ,  ...,- r ~ )  ( s a )  
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which describes symmetrical directed flights, the expectation value of the ith axial 
component of R(N),  (RdN)), is 0 for 2 s i s d ,  i.e. the unit vector e=( l ,O  ,..., 0) 
gives the preferred direction. For fully directed flights with the other kind of symmetric 
probability distribution 

p(rl ,..., r, ,..., 5,.  . . , rd )=p( r , , .  . . , r ,,.. . , r ( , . .  ., i d )  (56)  

the preferred direction is obviously given by e = (1, 1, .  . . , l ) / f l ,  Generally, the pre- 
ferred direction is defined by 

e = lim (R(W)/I(R(N))I. (6) N-m 

Then we have 

Rl l (N)=(R(N) .  e ) e  (7) 

R L ( N ) = R ( N ) - R I I ( N )  ( 8 )  

and 

where the dot denotes the scalar product. For directed ordinary flights (with finite 
variance) one can define the critical exponent U* for the asymptotical behaviour of 
R,(N) as 

U* = $nm ~ I ( R , ( N ) ~ ) / ~  In N (9) 

where * represents either 11 or 1 or no index. Pythagoras’ law R( Nj2 = RII(N)*+ R,( N)’ 
implies 

U = max{ull, U,}. (10) 

For directed Livy flights, the variance of R J N )  is diverging and we must define U* 
in another way. This will be discussed separately in section 3 .  

If 

q ( r (N-k) ,  . . . , r (N-1) )  = O  p ( r ( N - k ) ) .  . . p ( r ( N - l ) )  a s .  (11) 

(almost surely) then every step of the flight is independent, i.e. the flight is always 
self-avoiding. Equation (11) is fulfilled for the flights with 

for an arbitrary vector a, e.g. the fully directed flights and the partially directed flights 
with I , , s o p ( r ) d d r = P = l .  For the directed ordinary flights of this type, the critical 
exponents are 

(13) -!~ 
U = U,, = 1 and 1 - 2  



( r m ) =  r"'p(r) ddr # 0 m = l , 2  (17) I 
are independent of N.  

If q( r( N - k ) ,  . . . , r( N -  I ) )  # 0, the constraint of self-avoidance makes it 
more difficult to get the critical exponents of the directed self-avoiding flights. Now 
we first consider the case in 2 ~ .  For r , ( N - k ) =  ...= r , ( N - l ) = O ,  the steps 
r (  N - k ) ,  . . . , r( N - 1) belong to a I D  directed flight such that the probabilities 

if rz( N -  I ) >  0 (:I if rz( N - I )  < O  q ( r ( N -  k ) ,  . . . , r ( N - I ) )  = 

depend only on the last step, where 

with q+ + q- + P = 1. Let us denote the stationary probabilities for a step with r ,  = 0 
and *r2 > 0 by w, < q* and that for a step with r, > 0 by w > P. Then these stationary 
probabilities can be determined as  the components of the eigenvector of the transfer 
matrix 

corresponding to the eigenvalue 1 with the normalization condition w++ w-+ w = 1, 
yielding the more difficult equation for the preferred direction 

which implies immediately U = U,,  = 1. For example, for the symmetrical case q+ = q-  = q, 
it means 

and 

One can show rigorously that the critical exponent U,. for the Markovian flight with 
one-step memory remains the same as that for the independent flight though (16) has 
to be modified. 

For d > 2 and P < 1 the directed self-avoiding flight is no longer Markovian. But 
the probability for k consecutive steps with I,( N - k )  = , . . = I,( N - 1 )  = 0 decreases 
at least as (1  -P)'  so that we expect no effect on the critical exponents. Besides, the 
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upper boundary dimension for the usual (non-directed) ‘true’ SAW [13]  is d , = 2  and 
the critical exponents for the directed SAW coincide with those for the directed random 
walk [ 111. That is why we confine ourselves in the next section to the case of independent 
directed Levy flights. 

3. Directed IKvy flights 

Let us consider the example of a probability distribution p ( r )  with p(r)  = 0 for r, < O  
and 

r 

P ( r ) -  l r ld- ’p(r )  dCi=2-y”t” for 2 y ~ l r I < 2 y + ’  (23) 

with O<p 6 2. This probability distribution looks convenient to simulate a Levy-like 
flight since the probability P ( r )  depends only on the number of digits or r in the binary 
representation. But we can show that it does not belong to the domain of attraction 
of a Ltvy distribution; nevertheless, the critical exponents exist and coincide with that 
of a Ltvy flight with parameter p. 

Often Ltvy flights are restricted to the case of a probability distribution with decay 
c r - * - l  , p<2,  for the radial probability P ( r )  ( r  sufficiently large) for two different 
reasons: 

( i )  If p = 2  and P =  1 then the appropriately rescaled quantity ( R ( N ) -  
( R ( N ) ) } / B ( N )  tends (as {R(N)  - (R(N) )} /mfor ( r2 )  <a) to aGaussian distribution 
[2]. Since now B ( N )  #m indicating a novel critical behaviour, we will nevertheless 
treat the case p = 2 separately. 

(ii) If p<2 but the function L j ( x ) - x ~ j l ~ , l , ~ p ( r ) d ~ r  does not vary slowly for 
large x, the probability distribution for a single component does not belong to the 
domain of attraction of a stable distribution [2]. 

Let us show that L(x) = x” jl,lax p ( r )  ddr  with p(r)  according to (23) does not vary 
slowly, i.e. there is some real c>O with limx-m L(cx)/L(x) non-existent or differing 
from 1. With x=r.2’, l ~ z < 2 ,  we get L ( ~ . 2 ~ ) = 2 ” ( 2 ” ~ ’ -  1 ) / ( 2 ” -  1) - Pfl, which 
fluctuates in the interval 

J 

The second reason does not apply to distributions with the decay of the probability 

pr j r :  j r j  > = cx-*(in x)-K O<p<2. (24) 

We will also consider such distributions and refine the definition of the critical 
exponents in order to measure the influence of K.  Further, we will also investigate the 
cases p = 2 with K 6 1 and p = 0 not leading to Livy  distributions. 

The expectation value (r)  does not exist for p < 1 or p = 1 with K S 1 such that a 
preferred direction can no longer be defined by (6). But the preferred direction for 
the special cases given by symmetry arguments as (sa, b )  in section 2 can, of course, 
be used further. Then we will see below that R I l ( N )  and R , ( N )  do not differ in their 
asymptotic behaviour under mild assumptions. 

Since the variance of r is diverging, the critical exponents cannot be defined with 
the help of (9). Then let us introduce three other definitions: 
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(i) Consider the mean of order a. M*( N ) - ( I R , ( N ) J “ ) l / ” ,  if it exists. If for every 

N-m lim Mz(N)/{N”:(ln N)’*+‘)=o ( 2 5 )  

& > O  

and 

N-m lim M*(N)/{N”*(ln N)”*-‘} =CO 

we will write 
R , ( N ) -  N”*(ln I V ) ~ *  for N + m  (27) 

where A, is called the critical exponent of the logarithmic correction [7]. These means 
have, for non-degenerate random variables, the property that A42 < Mg if a < p.  In 
the field of ordinary random Rights and of Livy Rights especially, the means with a = 2 
(quadratic mean), a = 1 (arithmetic mean) and a = O  (geometric mean) [4,7] with 
Mo*(N) = exp(lnlR,(N)I) were applied; and in other papers [15] about random struc- 
tures a = -1 (harmonic mean) and a = -2 also appeared. Immediately two questions 
arise: 

(a)  For which a is the mean M * ( N )  finite? Since the N-fold convolution of P * ( r )  
has the same asymptotic behaviour [ 2 ]  of the tail r-’’(ln r ) - %  as P*(r ) ,  M * ( N )  is finite 
for a < p and diverging for a > p. 

( b )  If MZ and M $  are both finite do  the pairs ( u * ~ ,  A,*) and ( u , ~ ,  A,p) coincide 
with each other? This question has an encouraging answer: if P* ( r )  belongs to the 
domain of attraction of a stable distribution with index p. then { R , ( N ) -  
A , ( N ) } / B , ( N )  tends for a pair of appropriate sequences A , ( N )  and B,(N) to this 
stable distribution and for a < p  the mean of order a of { R , ( N ) - A , ( N ) ] / B , ( N )  
has a finite limit. Independent of a (a < p ) .  the behaviour of M Z ( N )  is given by 
either A , ( N )  or B , ( N ) .  Hence the use of the geometric mean [4,7] contains no 
arbitrariness. 

If p>1 or p = l  with ~ > l ,  then A , ( N ) = ( R , ( N ) ) = N ( r , )  determines the 
behaviour of the mean M Z ( N )  as  

M : ( N ) - N  for ( r , )  # 0 (28) 

(26) 

whereas E,( N )  does as 

M $ ( N ) - B * ( N )  for (I,) = 0 (29) 

with [2] 
N””(1n N)-K’F for p < 2  

B , ( N ) -  Nl/’(ln N)“-“ ’ /2  for p =2, K < 1 (30) [ N”*(In(ln N))” ’  for p=2 ,  K = 1. 

If p =  1 with K s 1, then B , ( N ) -  N(ln N ) - “  does not influence the critical behaviour 
of M Z ( N ) ,  hence 

N(1n N)’-“ 
N In(ln N)  

for K < 1 
for K = 1. 

If p < l ,  then A , ( N ) = O  and 

M : ( N ) - B , ( N ) -  N1/”(ln N ) - K / @ .  (32) 

For K = 0, the results by Lee et a1 [7] for the case p = 2 are confirmed. 
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If P * ( r )  does not belong to the domain of attraction of a stable distribution as our 
example given by (23), then include it for the case ( r*)  = 0 or non-existent but varying 
between two distributions P S ( r )  and P f ( r )  with PT(r )  s P * ( r )  s P f ( r )  for sufficiently 
large (r l ,  where P:  and Pf lie in the domain of attraction of Livy distributions with 
the same normalizing constant B*'(N).  We will assume that this i s  always possible, 
excluding probability distributions with a too strong variation of L(x). The above idea 
is only a plausibility argument for M * ( N )  - E,( N )  with * representing I or no index. 
For * = /I it can be extended to a rigorous proof. 

(ii) The answer to question ( ia)  can be exploited for the following crude definition 
which does not specify A :  

uIl =min{l, min{a-': M ! (  ~ ) < o o ) ]  

ul =min{a-l: M I ( N )  < 00). 

(33) 

(34) 

and for l C f i s 2  

This definition is an analogy to the definition of the Hausdorff dimension of a fractal 

A fine classification would be possible with the help of refined means. Since we 
[161. 

are not aware of such means in the literature, let us introduce the means 

M,,o(N) =fZ.'d(L,p(IR(N)I))} (35) 

with 

L,&) = Ixl"{~n(l+lxl)}P a > O .  (36) 
The analogy to the refined Hausdorff dimension according to Hausdorffs paper from 
1918 [16] is obvious, only the asymptotic regions differ: Hausdorff has to consider the 
behaviour off& for x + 0, whereas for our purpose the behaviour for x + m has to 
be considered. The refined Hausdorii dimension seldom appears in the modern 
literature about fractals though it is useful for very simple examples (cf appendix). 

For large 1x1 the iterated function f,s{fm.p(x)] is approximately f,l.ol+6(~). i.e. 

f , ' , ( x )  - f i / . . p i u ( x ) .  (37) 
The second derivative of f & ( x )  is approximately 

x ~ - * ( I n ( l + ~ ) ) ~ - ~ { a ( a - l )  ~ n 2 ( 1 + x ) + 2 a p x " - 2 ( l n ( l + x ) ) B ~ 1 ]  

for large x, i.e.fa,o(x) is concave for 0 < a < 1 or a = 1 with p < 0 and convex otherwise. 
Jensen's inequality implies that, for large R(  N), M&,( N )  < M:,,( N )  for E < 1 or E = 1 
with 7 <O. The approximate iteration rule finally yields M & ( N )  < M:,8( N )  for large 
R ( N ) ,  a < y or a = y with p < S (by taking E = a / y  and 11 = p - a 6 / y ) .  Since the 
N-fold convolution of P*( r )  has the same asymptotic behaviour of the tail r-+-'(In r ) -K ,  
MZ,P is obviously finite if and only if a < fi  or a = p with p < K - 1. The comparison 
with definition (i) yields 

Ai l=O for min{a-': M ! , ~ ( N ) < c o ) >  1 (38) 
and 

A , I =  q( l+max{p:  <a))) (39) 
for min{a-': M ! , A ( N ) < c o ) <  1. 

(iii) The following definition is mostly appropriate for computer simulation. Now 
for fixed number ofsteps N typical Levy flights are filtered out, i.e. those with Ir,l< F ( N )  
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for every i (1 < i <  d ) .  The largest step-length F ( N )  is chosen in such a way that the 
probability 

P r { r ( k ) , V k c N :  Ir(k)l<F(N)}-l-exp{-N.{F(N))-"{lnF(N)}-"} 
is of order O(1). i.e. 

F ( N )  -h/F,-K/G( N )  for p>O (40) 

and 

. F( N )  - exp{ N"") for p = 0. (41) 

Then the averages (Rt(N))F(N) and (Ri (N))F(N,  can be easily calculated, where the 
index F ( N )  means that only typical flights are averaged. As an example, we consider 
the simulation by Hu and Yao [12]: N = 100 and 0 . 5 s p s  1.6 mean that F(100) is of 
order between 10 000 and 18. The cut-off F( N )  = 6 in [ 121 is obviously much too small, 
hence the result of their simulation is not surprising. They get the critical exponents 
of an ordinary flight with finite support of p * ( r ) .  

Now let us calculate the critical exponents for this definition: if ( r )  exists, i.e. for 
p > l  or p = 1  with K S 1 ,  we have for large N 

(R?(N))%,- N"*((r?~~cN))l 'z 
N'lP(ln N)-K''' for 1 < p < 2  

N'/'(ln N)'l-")/Z 
- N'"(ln(1n PI))'/* for p =  2 with K = 1 (42) 

for p = 2 with K < 1 

(43) 

[ 

- I 

while 

( R ( N ) ) - N  

in coincidence with definition (i), and otherwise 

( R ( N ) ) ~ ( ~ ) -  N(r)FcN) 

N'/"(ln N)-"" for O<p< 1 
N(ln N)'-" f o r p = l w i t h K < l  
N In(ln N )  for p = 1 with K = 1 
N-"" exp(N'/") for p = 0. 

(44) 

I 
Again the critical exponents coincide with those from definition (i). A slowly varying 
function L ( x )  does not pose any additional difficulties. This cut-off method can be 
applied to the 2~ DSALF, where the modified equation (20) shows that the critical 
exponents are not changed due to the self-avoidance condition. 

It is an open problem to show that the critical behaviour according to definitions 
(i) and (iii) coincides if an arbitrary finer classification like N"(ln N)"(ln(ln N))"  is 
introduced. 

Annandiv -.YY.,..'." 

Consider Pascal's triangle modulo 4, where every binomial coefficient divisible by 4 
is represented by a white pixel and the others by a black one. Let V be the limit n +a 
of 2" lines of that triangle reduced to a triangle of fixed size. V consists of three copies 
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of itself of half size and a Sierpinski gasket S around the centre of the triangle. S 
consists of three copies of itself of half size. If the three copies and S are decomposed 
again then one gets nine copies of V of a quarter size and six copies of S of half size. 
By induction one can show that after n such steps V is decomposed into 3" copies of 
V with similarity factor 2-" and n. 3"-' copies of S with factor 2'-". Hence the 
Hausdorfi dimension is In 3/ln 2 which can also be concluded from theorem 4 in [17]. 
But the n' 3"-' copies of S imply that this dimension has a logarithmic refinement in 
the first power, which has perhaps not been noted before. 

References 

[ I ]  Mandelbrot B B 1982 The Fractal Geomelry of Nature (San Francisco: Freeman) 

[3] Hughes B D, Mantroll E W a n d  Shlesinger M F 1982 I .  Slat. Phys. 28 111 
[4] Grassberger P 1985 J. Phys. A: Moth. Gen. 18 L463 
[SI de Cennes P G 1979 Scaling Concepr in Polymer Physics (Cornel! University Press) 
[6] Halley 1 W and Nakanishi H 1985 Phys Rev. Lett. 55 551 
[7] Lee S B, Nakanishi H and Derrida B 1987 Phys. Rev. A 36 5059 
[8] Moan J and Nakanishi H 1989 Phyr. Rev. A 40 1063 
[91 Cardy S L 1983 I. Phys. A: Molh. Gen. 16 L355 

[IO]  Redner S and Majid I 1983 I Phys. A: Math. Gen. 16 L307 
[ I l l  Szpilka A M 1983 I. Phys. A: Malh. Gen. 16 2883 
[I?] Hu J T and Yao K L 1988 I. Phys. A: M o l .  Gen. 21 3113 
[I31 Amit D 1, Parisi G and Peliti L 1983 Phys. Rev. B 27 1635 
[I41 Zhang Y C and Peliti L 1985 J. Phys. A: Moth. Gen. 18 L7SS 
[IS] Grassberger P and Pracaccia I 1983 Phys. Rev. Lett. M 346 
[I61 Hausdarff F 1918 Math. Annalen 79 157 
[I71 Mauldin R D and Williams S C 1988 Trons. Amer. Morh. Soc. 309 811 

[?! Lnhl !? G 8°C !?ahP:gi ? Y !?E '...hsbi!i!;. %CO.? (Ne..v ?o:k Wi!ey! CL 5 


